The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation.
نویسندگان
چکیده
Although a large proportion of patients with polycythemia vera (PV) harbor a valine-to-phenylalanine mutation at amino acid 617 (V617F) in the JAK2 signaling molecule, the stage of hematopoiesis at which the mutation arises is unknown. Here we isolated and characterized hematopoietic stem cells (HSC) and myeloid progenitors from 16 PV patient samples and 14 normal individuals, testing whether the JAK2 mutation could be found at the level of stem or progenitor cells and whether the JAK2 V617F-positive cells had altered differentiation potential. In all PV samples analyzed, there were increased numbers of cells with a HSC phenotype (CD34+CD38-CD90+Lin-) compared with normal samples. Hematopoietic progenitor assays demonstrated that the differentiation potential of PV was already skewed toward the erythroid lineage at the HSC level. The JAK2 V617F mutation was detectable within HSC and their progeny in PV. Moreover, the aberrant erythroid potential of PV HSC was potently inhibited with a JAK2 inhibitor, AG490.
منابع مشابه
Extent of hematopoietic involvement by TET2 mutations in JAK2V⁶¹⁷F polycythemia vera.
TET2 mutations are found in polycythemia vera and it was initially reported that there is a greater TET2 mutational burden than JAK2(V617F) in polycythemia vera stem cells and that TET2 mutations precede JAK2(V617F). We quantified the proportion of TET2, JAK2(V617F) mutations and X-chromosome allelic usage in polycythemia vera cells, BFU-Es and in vitro expanded erythroid progenitors and found ...
متن کاملارزیابی جهش JAK2V617F در نئوپلاسم های میلوپرولیفراتیو کلاسیک غیر CML به روش ARMS-PCR
Background and Aim : Myeloproliferative neoplasms are clonal and heterogeneous disorders of hematopoietic stem cells lead to increase of one or more cell lines in the blood. Recently, the acquired mutation JAK2 V617F has been described in the majority of patients with myeloproliferative neoplasms (MPNs).This mutation is characterized by a G to T transverse at nucleotide 1849 in exon 12 of the J...
متن کاملThe JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective
Janus kinases (JAKs) are non-receptor tyrosine kinases essential for activation of signaling mediated by cytokine receptors that lack catalytic activity, including receptors for erythropoietin, thrombopoietin, most interleukins and interferon. Upon hormone binding, JAKs phosphorylate tyrosine residues in the receptor cytoplasmic domains and in JAKs themselves leading to recruitment and activati...
متن کاملInvolvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera.
The JAK2(V617F) mutation has been shown to occur in the overwhelming majority of patients with polycythemia vera (PV). To study the role of the mutation in the excessive production of differentiated hematopoietic cells in PV, CD19+, CD3+, CD34+, CD33+, and glycophorin A+ cells and granulocytes were isolated from the peripheral blood (PB) of 8 patients with PV and 3 healthy donors mobilized with...
متن کاملProgenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia.
An acquired V617F JAK2 mutation occurs in patients with polycythemia vera (PV) or essential thrombocythemia (ET). In a proportion of V617F-positive patients, mitotic recombination produces mutation-homozygous cells that come to predominate with time. However, the prevalence of homozygosity is unclear, as previous reports studied mixed populations of wild-type, V617F-heterozygous, and V617F-homo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 16 شماره
صفحات -
تاریخ انتشار 2006